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ABSTRACT

In this paper, we introduce PoMiN, a lightweight N -body code based on the post-Minkowskian N -
body Hamiltonian of Ledvinka et. al., which includes general relativistic effects up to first order in
Newton’s constant G, and all orders in the speed of light c. PoMiN is written in C and uses a fourth-
order Runge-Kutta integration scheme. PoMiN has also been written to handle an arbitrary number
of particles (both massive and massless), with a computational complexity that scales as O(N2). We
describe the methods we used to simplify and organize the Hamiltonian, and the tests we performed
(convergence, conservation, and analytical comparison tests) to validate the code.

1. INTRODUCTION

In general relativity (GR), the N -body problem (where N ≥ 2) in an astrophysically realistic scenario requires the
use of approximate and/or numerical methods Poisson & Will (2014). A widely used approximation to GR is the
post-Newtonian (PN) formalism, which can be applied to weak gravitational fields and can be pushed to higher and
higher orders (in powers of Gc−2 and c−2) to create an increasingly accurate description of the field. PN has proven
to be very successful in several astrophysical applications of two- and three-body problems as well as for N -body
problems with N > 3, such as the solar system Kopeikin et al. (2011) and stars orbiting a supermassive black hole in
a galactic nucleus Hamers et al. (2014); Mikkola & Merritt (2008).
The PN formalism relies on the “slow-motion” assumption that characteristic velocities are lower than the speed of

light. If one wishes to relax this slow-motion condition (and obtain a “fast-motion” approximation), one may instead
perform a post-Minkowskian (PM) approximation. Like the PN formalism, the PM formalism can be expressed in
increasingly higher orders (this time, powers of Newtons constant G) of increasing accuracy. The PM formalism has
been used to model the wave zone around a coalescing binary black hole Blanchet (2014) as well as in the effective
one-body formalism of Damour for two-body systems Damour (2016). Both of these use the PM formalism for an
N = 2 system.
The PN approximation with N = 2 and N ≥ 3 Futamase & Itoh (2007); Itoh (2009); Schäfer (1987); Lousto &

Nakano (2008); Kupi et al. (2006); Brem et al. (2013); Aarseth (2007); Will (2014a,b) (also see Blanchet (2014) and
references contained therein) and the PM approximation with N = 2 Blanchet (2014); Damour (2016); Westpfahl &
Goller (1979); Portilla (1979, 1980); Bel et al. (1981); Westpfahl (1985); Westpfahl et al. (1987), have been extensively
studied in the literature, but relatively little has been done with the PM approximation for problems in which N ≥ 3.
In this paper we describe PoMiN: a PM N -body solver for arbitrarily high N that uses the fast-motion approximation
to first order in G and all orders in c. PoMiN is lightweight, meaning that it is small since it uses no external libraries
(except quadmath if quadruple floating-point precision is desired) and is relatively simple, being a single file of fewer
than 1000 lines written in C. As we show, PoMiN has demonstrated the expected fourth-order convergence behavior
(Section 3.2), momentum conservation to machine precision, and good agreement with analytical values of momentum
exchange (Section 3.3).
Ledvinka, Schäfer, and Bičák Ledvinka et al. (2008), used a post-Minkowskian approximation to obtain a closed-form

gravitational N -body Hamiltonian for nonspinning point particles1 that takes into account general relativistic effects
to first order in G and all orders in c. The form of this N -body Hamiltonian, which we call the LSB Hamiltonian (for
the authors) is rather complicated, so it is appropriate to study the resulting dynamics computationally.

1 For another approach to the N -body problem in the PM approximation that can handle extended objects and spinning particles, see
Zschocke & Soffel (2014).
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PoMiN uses a fourth-order Runge-Kutta (RK4) method to solve Hamilton’s equations for the LSB Hamiltonian.
We note that for long-term N -body simulations, one is often interested in integration methods that conserve energy
(on average) over long time scales. Long-term N -body simulations therefore employ time-symmetric or symplectic
integrators, which have improved energy conservation on long timescales compared to Runge-Kutta integrators Hut
et al. (1997, 1995).2 Alhough it would be preferable to employ such methods in PoMiN, we have chosen to use an
RK4 integrator for its relative simplicity and because it is explicit. While there exist explicit symplectic integrators for
Hamiltonian systems that are simpler than RK4 (the leapfrog integrator, for instance), such integrators typically require
separable Hamiltonians of the form H(p, q) = T (p) + V (q) Forest & Ruth (1990); Yoshida (1990); the nonseparability
of LSB Hamiltonian requires more sophisticated integrators, such as the partitioned-Runge-Kutta (PRK) methods
(see Chapter 14 of Sanz-Serna & Calvo (1994) and references therein) or the splitting method of Tao Tao (2016). In
spite of this current limitation (which we hope to resolve in future versions of PoMiN), we demonstrate that PoMiN

is suitable for studying problems in which gravitational interactions between objects are confined to short timescales
(such as scattering problems).

2. ANALYTICAL BACKGROUND

2.1. The Hamiltonian

We briefly summarize the derivation of the LSB Hamiltonian; further details may be found in Ledvinka et al.
(2008) and Schäfer (1986). The starting point for the derivation of the LSB is the post-Minkowski Hamiltonian of
Schäfer (1986), which is a function of the coordinates and momenta for point particles, but is also a functional of
the gravitational field and its conjugate momenta. The derivation of the Hamiltonian in Schäfer (1986) begins with
the ADM 3+1 split of the gravitational field Misner et al. (1973); Arnowitt et al. (1962, 2008), and the conversion
of the boundary term in the ADM Hamiltonian to an integral over the bulk (done for a particular decomposition of
the three-metric gij and choice of gauge). Using the constraints, the result may be used to obtain a Hamiltonian that
depends on the positions and conjugate momenta for point particle sources and the gravitational field hTT

ij and its

conjugate momentum πij
TT , with hTT

ij being the transverse-traceless part of hij := gij − δij (the difference between the
three-metric gij and the Kronecker delta δij).
The derivation of the LSB Hamiltonian involves solving the linearized field equations for hTT

ij with point particle
sources, under the assumption that to first order in Newton’s constantG, the field is generated entirely by unaccelerated
particles. The solution hTT

ij (x;xa,pa, ẋa) is a function of the spatial coordinate x, the positions of the particles xa,
their conjugate momenta pa, and their velocities ẋa. To eliminate the fields from the Hamiltonian, a Routhian
Goldstein et al. (2002) is constructed from a Legendre transformation of the fields, so that it forms a Hamiltonian for
the particles but a Lagrangian for the fields hTT

ij . Upon noting that the aforementioned solutions hTT
ij (x;xa,pa, ẋa)

are nonradiative, and that the functional derivatives of the Routhian vanish on solutions of the field equations, one
may substitute the solutions hTT

ij (x;xa,pa, ẋa) without changing Hamilton’s equations for the particles. Since the
solutions hTT

ij (x;xa,pa, ẋa) depend explicitly on the particle coordinates, their momenta, and the particle velocities,
one can obtain a “Hamiltonian” for the particles that is independent of the fields. A coordinate transformation allows
one to eliminate the dependence of the Hamiltonian on ẋa, and one obtains the LSB Hamiltonian Ledvinka et al.
(2008):

H(xa,pa) =

N∑
a=1

m̄a − 1

2
G

N∑
a,b �=a

m̄am̄b

rab

(
1 +

p2
a

m̄2
a

+
p2
b

m̄2
b

)
+

1

4
G

N∑
a,b �=a

{
1

rab
(7pa · pb + (pa · nab)(pb · nab))

− 1

rab

(m̄am̄b)
−1

(yba + 1)
2
yba

[
2
(
2 (pa · pb)

2
(pb · nba)

2 − 2(pa · nba)(pb · nba)(pa · pb)p
2
b + (pa · nba)

2
p4
b − (pa · pb)

2
p2
b

) 1

m̄2
b

+ 2
(
−p2

a (pb · nba)
2
+ (pa · nba)

2
(pb · nba)

2
+ 2(pa · nba)(pb · nba)(pa · pb) + (pa · pb)

2 − (pa · nba)
2
p2
b

)

+
(
−3p2

a (pb · nba)
2
+ (pa · nba)

2
(pb · nba)

2
+ 8(pa · nba)(pb · nba)(pa · pb) + p2

ap
2
b − 3 (pa · nba)

2
p2
b

)
yba

]}

(1)

2 We must also mention here the exactly conservative integrators of the type presented in Shadwick et al. (1998).
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where xa and pa are the respective positions and conjugate momenta of the particles, and the following quantities are
defined:

m̄a :=
√

m2
a + p2

a

rab := |xa − xb| =
√
(xa − xb) · (xa − xb)

nab := r−1
ab (xa − xb)

yba := m̄−1
b

√
m2

b + (nba · pb)
2

(2)

with ma being the rest mass, which is not to be confused with m̄a, which one may recognize as the relativistic kinetic
energy of a particle in flat spacetime. One may also recognize rab and nab as the respective distance of separation
between particles a and b and the unit separation vector nab.

2.2. Splitting the Hamiltonian

In spite of its simplicity, the LSB Hamiltonian (1) is still rather complicated; to simplify the Hamiltonian, we
introduce the following scalar quantities:

Θab := pa · nba

Ξab := pa · pb

(3)

We decompose the Hamiltonian (1) into three parts:

H = H1 +H2 +H3 (4)

where we define the following:

H1 :=
N∑

a=1

m̄a − 1

2
G

N∑
a,b �=a

m̄am̄b

rab

(
1 +

p2
a

m̄2
a

+
p2
b

m̄2
b

)
(5)

H2 :=
1

4
G

N∑
a,b �=a

1

rab
(7 Ξab −Θab Θba) (6)

H3 := −1

4
G

N∑
a,b �=a

1

rab

(m̄am̄b)
−1

(yba + 1)
2
yba

[
2
[−2Ξ2

ab Θ
2
ba + 2Θab ΘbaΞab p

2
b +Θ2

ab p
4
b − Ξ2

ab p
2
b

] 1

m̄2
b

+ 2
[
p2
a Θ

2
ba −Θ2

ab Θ
2
ba − 2Θab Θba Ξab + Ξ2

ab −Θ2
ab p

2
b

]

+
[
3p2

a Θ
2
ba −Θ2

ab Θ
2
ba − 8Θab Θba Ξab + p2

a p
2
b − 3Θ2

ab p
2
b

]
yba

]
.

(7)

The first term in H1 is the sum of the special-relativistic energies m̄a for each particle, and the second term in H1

contains the Newtonian gravitational potential. H2 and H3 contain post-Minkowskian contributions to the Hamilto-
nian. Note that the individual terms in H1 and H2 are symmetric, but those in H3 are not due to the yba factors. In
principle, H3 may be rewritten in a symmetric form due to the summation over a and b.
A difficulty that one encounters is the fact that yba may vanish when the particle labeled by b is massless (mb = 0)

and the momentum pb is orthogonal to the separation vector nba. Naively, one might expect that since H3 contains
a factor of y−1

ba , both H3 and its derivatives will diverge as a result. It turns out that when mb = 0, both H3 and
its derivatives simplify, and the problematic factor y−1

ba is canceled by factors of Θba in the numerator. We briefly
describe what happens for the case of H3. First, we note that if mb = 0, then m̄2

b = p2
b and Θba = σyba|pb|, where

σ = sgn(Θba). If we replace m̄2
b and Θba accordingly, some terms cancel, and the quantity in the large square brackets

of Equation (7) becomes proportional to yab. The resulting expression for H3 in the limit mb → 0 is:

lim
mb→0

H3 = −1

4
G

N∑
a,b �=a

1

rab

(m̄am̄b)
−1

(yba + 1)
2

[
4ybaΞ

2
ab − 2ybap

2
ap

2
b + 2ybaΘ

2
abp

2
b − 3y2bap

2
ap

2
b + ybaΘ

2
abp

2
b − 8ΘabΘbaΞab + p2

ap
2
b

− 3Θ2
abp

2
b

]
.

(8)
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One may be tempted to use the above expression (8) as the Hamiltonian for massless particles; this works when all
particles in the system are massless, but one cannot use terms of the form in Equation (8) to describe the interaction
between massive and massless particles. This is because derivatives of the Hamiltonian and the limit mb → 0 do not
commute; one obtains different results for the derivatives of the Hamiltonian depending on whether the limit is taken
before or after the derivatives are performed. The correct procedure is to take the limit mb → 0 after taking the
derivatives of the Hamiltonian.

2.3. Formal Derivative Methods

In this section, we describe a method for systematically computing the derivatives of the LSB Hamiltonian, in
which we decompose the derivatives of the Hamiltonian according to the chain rule. The equations of motion for a
Hamiltonian system are described by Hamilton’s equations:

ṗai ≡ −∂H

∂qia
q̇ia ≡ ∂H

∂pai
, (9)

where qia is the ith component of qa and pai is the ith component of pa. To compute the equations of motion for all N
particles, one can use the formal derivative of a Hamiltonian, ∂H

∂z . If the Hamiltonian is a function of scalar quantities

ΦA(z), then ∂H
∂z is a function of ΦA(z) and ∂(ΦA)

∂z , such that

H = H
(
ΦA(z)

)
∂H

∂z
= F(z)

(
ΦA,

∂ΦA

∂z

)
,

(10)

where F(z) is given by the following expression (this is just the chain rule applied to the derivative of the Hamiltonian):

F(z)

(
ΦA,

∂ΦA

∂z

)
=

∑
A

∂H

∂(ΦA)

∂ΦA

∂z
. (11)

For the Hamiltonian defined in Equations (4)–(7), ΦA represents the following set:

ΦA ∈ {
m̄a,p

2
a, rab, yba,Θab,Ξab

}
. (12)

For a system of N particles, this is a set of 2N + 4(N2 − N) = 4N2 − 2N scalar quantities. Thus, the formal

derivative ∂ΦA

∂z represents the set

∂ΦA

∂z
∈
{
∂m̄a

∂qic
,
∂p2

a

∂qic
,
∂rab
∂qic

,
∂yba
∂qic

,
∂Θab

∂qic
,
∂Ξab

∂qic
;

∂m̄a

∂pci
,
∂p2

a

∂pci
,
∂rab
∂pci

,
∂yba
∂pci

,
∂Θab

∂pci
,
∂Ξab

∂pci

}
.

(13)

Each particle in this system exists in a six-dimensional phase space, so every scalar quantity has 6N derivatives. As
such, the total number of derivatives for this system is 6N × (4N2 − 2N) = 24N3 − 12N2. While this suggests that
the number of calculations scales as ∼ N3, the complexity is reduced by computing only nonvanishing derivatives.
The nonvanishing derivatives are those in the set (13) where the particle label c matches that of either a or b, such
that c ∈ {a, b}, reducing the 6N derivatives to 6× 2 = 12. The total number of derivatives is now 12× (4N2 − 2N) =

48N2 − 24N . Therefore, the total number of quantities ΦA(z) and ∂ΦA

∂z that must be calculated at every timestep is
52N2 − 26N . The complexity can be further reduced by observing that the following derivatives always vanish:

∂(p2
a)

∂qic
= 0;

∂rab
∂pci

= 0;

∂m̄a

∂qic
= 0;

∂Ξab

∂qic
= 0.

(14)
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Hamilton’s equations (9) can now be rewritten in terms of the scalar quantities ΦA(z) and ∂ΦA

∂z :

ṗci ≡ −∂H

∂qic
= −F(qic)

(
ΦA,

∂ΦA

∂qic

)

q̇ic ≡ ∂H

∂pci
= F(pc

i )

(
ΦA,

∂ΦA

∂pci

)
,

(15)

where F(z) is the formal derivative of the H defined in equations (4)–(7). We compute an expression for the formal
derivatives3 F(z) of the Hamiltonian using a computer algebra system (we use Mathematica) and convert the resulting
expression for F(z) to the C programming language by means of character and string replacements. The right-hand
side of Hamilton’s equations (15) is evaluated by first computing ΦA and its derivatives, then inserting the result into
the C implementation of the function F(z).
Before proceeding, we mention that in addition to their organizational appeal, the formal derivative methods we have

described in this section naturally lead to more efficient codes for a (generic) complicated Hamiltonian. This is because

a code based on the formal derivative methods only requires computing the derivatives ∂ΦA

∂z once in each timestep;
the numerical implementation of the “brute force” method will (barring some extraordinary algebraic simplification)

in general require performing computations corresponding to the derivatives ∂ΦA

∂z more than once. Of course, our
comments here are generic and are intended for problems involving a complicated Hamiltonian (such as the LSB
Hamiltonian) for which there is no obvious simplification, either in the Hamiltonian itself or in the resulting Hamilton’s
equations.

3. NUMERICAL METHODS AND TESTS

3.1. Overview of Numerical Methods

PoMiN is open source and is designed with simplicity in mind.4 PoMiN uses an RK4 integration method to numerically
solve Hamilton’s equations (15) as given by the Hamiltonian defined in equations (4–7). We employ a simple global
adaptive time-stepping scheme5 based on the Courant—Friedrichs—Lewy (CFL) condition Courant et al. (1967). An
adaptive time-stepping scheme is particularly useful for scattering problems; in scattering problems, particles start out
with a large separation distance, but the distance of closest approach may be several orders of magnitude smaller than
the initial separation distances. Such a large initial separation is necessary in scattering problems because it is difficult
to invert Hamilton’s equations to solve for the full dependence of the conjugate momenta pa on the particle velocities

ẋa, except in the limit where the particles are separated by large distances, in which case the canonical momenta are
well approximated by the special-relativistic momenta. Our implementation of the CFL condition places a limit on
the ratio between the distance a particle moves in a single timestep and the distance to its nearest neighbor. Given a
timestep Δt, the change in the magnitude of the relative particle distance is Δrab � |vab|Δt, where |vab| ≡

√
q̇a − q̇b.

Thus, our CFL condition is
Δrab
rab

=
|vab|Δt

rab
≤ C, (16)

where C is the Courant number, the upper limit for this ratio at a given timestep. For the adaptive time-stepping
algorithm, this condition must hold for the pair of particles that are closest to each other. If this condition fails, the
timestep is recomputed using the following formula:

Δt ≡ C
rab
|vab| . (17)

3.2. Convergence Tests

We perform implicit self-consistent convergence tests to check that our code behaves in a manner expected of a
fourth-order code. Such convergence tests are particularly important for situations in which there is no exact analytical
solution available for comparison, and can reveal the presence of mistakes and bugs in the code Baumgarte & Shapiro

3 We take the limit mb → 0 in the derivatives of the Hamiltonian, which allows us to get rid of factors of yba in the denominator of
Equation (15).

4 The code is written in C and the source consists of a single file. The source code contains three primary functions, one of which is the
main computational loop. The other two functions, named HamiltonEquations and DHamiltonian, are used to compute the right-hand side
of Hamilton’s equations (15); in particular, HamiltonEquations computes the quantities ΦA and calls DHamiltonian, which computes the
derivatives of the Hamiltonian defined in Equations (4–7).

5 The user has the option to disable this feature.
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(2010)6 The convergence tests we have performed are based on Richardson extrapolation, in which one conjectures that
the numerical result7 for any phase space coordinate z differs from the analytical result by a power series expansion
of the timestep Richardson (1910); Alcubierre (2008); Baumgarte & Shapiro (2010); Choptuik (2006):

znm(h) = zan + e1h+ e2h
2 + e3h

3 + e4h
4 + · · · (18)

Since RK4 is a fourth-order integration method, the expected errors in the numerical result should be of the order of
h4, such that e1 = e2 = e3 = 0. Following Choptuik Choptuik (2006), we define a convergence factor:

Q =

∣∣∣∣znm(4h)− znm(2h)

znm(2h)− znm(h)

∣∣∣∣ , (19)

where the use of absolute values denotes the Euclidean norm. Using Equation 19, one can calculate the convergence
factor Q as the timestep h is repeatedly halved in the limit h → 0:

lim
h→0

Q = lim
h→0

∣∣∣∣∣
znm(h)− znm(h2 )

znm(h2 ))− znm(h4 ))

∣∣∣∣∣
� lim

h→0

∣∣∣∣∣
(e4h

4 + e5O(h5))− (e4(
h
2 )

4 +O(h5))

(e4(
h
2 )

4 +O(h5))− (e4(
h
4 )

4 +O(h5))

∣∣∣∣∣
� lim

h→0

∣∣∣∣∣
e4h

4 − e4(
h
2 )

4

e4(
h
2 )

4 − e4(
h
4 )

4

∣∣∣∣∣ = lim
h→0

∣∣∣∣ 1− ( 12 )
4

( 12 )
4 − ( 14 )

4

∣∣∣∣
= lim

h→0

∣∣∣∣ 1− 1
16

1
16 − 1

256

∣∣∣∣
= 16

(20)

The above computation (20) demonstrates that in the limit h → 0, the convergence factor Q should converge to a
value of 16 for a code based on the RK4 method.
In Figure 1, we present the results of six convergence tests of our code8. In each case, we examine the quantity p2

for the particle of lower mass or zero mass, with the exception of Figure 1(f), which we shall discuss later. The first
three tests (Figures 1(a)-(c)) each involved two massive particles, with one particle being much more massive than the
other. In Figures 1(a) and 1(b), initial conditions were chosen so that the particles follow orbits of high eccentricity;
in Figure 1(a) we chose an eccentricity of ε = 0.50, and in Figure 1(b), we chose an eccentricity of ε = 0.95. In both
Figures 1(a) and 1(b), the central mass was chosen to be unity (in natural units c = G = 1), and the lighter mass was
chosen to have a value of 1.66× 10−7.
Figures 1(c) through 1(e) describe the convergence tests for the scattering of two particles. In all cases, the impact

parameter is 19.61 (again, in natural units c = G = 1), the total rest energy is unity, and the initial conditions are
chosen near the point of closest approach. Figure 1(c) involves the ultrarelativistic scattering of two massive particles of
unequal mass, with the higher mass having a value of m1 = 0.0498, and the lower mass having a value of m2 = π/4m1,
and each particle having a momentum of magnitude |p| = 10m1 at late times. Figure 1(d) involves the scattering of
two massless particles; here, the system is symmetric, and the magnitude of the late-time momenta for each particle
has a value of 0.50. Figure 1(e) involves the scattering between a massive and a massless particle; the mass of the
massive particle has a value of 0.541, and each particle has a momentum of magnitude 0.354 in the late-time limit.
Figure 1(f) describes the convergence test for a five-particle system involving two massive particles and three massless

particles. The initial conditions for this system were formed from the initial conditions for the massless-massive
scattering test in Figure 1(e) and the massless-massless scattering test in 1(d), with the addition of a stationary
massive particle of unit mass at the origin. The convergence test was performed for the quantity p2 on the lighter
massive particle, which has a mass of 0.541. Since this five-particle test is the most comprehensive convergence test
for PoMiN, we also list the values of the convergence factor Q for this test in Table 1.

6 It is worth reiterating the admonishment found at the end of chapter 9 in Alcubierre (2008): one should not trust any numerical
calculation for which no convergence tests have been performed.

7 One might, for instance, use the values of the phase space coordinates z at the final timestep.
8 To compute Q for very small h, we pushed our convergence tests beyond double floating-point precision and used the quadmath library.

This feature of the code can be turned off and on; in the case where more precision is needed, quadruple floating-point precision can
be turned on, and in the case where that level of precision is not needed and a lighter-weight code with more speed is desired, double
floating-point precision can be turned on.
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Figure 1. Results of six convergence tests . Here, computations are performed to quadruple floating-point precision. In each
plot, we have plotted (using dots) the convergence factor Q (for the quantity p2 of a particle in the system) against the smallest
timestep used to compute Q. The timestep are given in units of h, where h is the largest timestep used in the convergence test.
For each plot, the values of h (in natural units c = G = 1) are as follows: for (a), h = 6.15× 1013; for (b), h = 2.70× 1013; and
for plots (c) through (f), h = 0.05. In plot (a), the initial number of timesteps is 200, in plot (b), the initial number of timesteps
is 1000, and in plots (c)-(f), the initial number of timesteps is 5. We have performed a fit to an exponential curve that we have
included in the plots.

In all cases, the convergence factor Q monotonically converges to the value 16; in most cases (Figures 1(b) through
1(f) in particular), Q exhibits exponential convergence to 16. The convergence test results summarized in Figure 1
and Table 1 demonstrate that PoMiN converges in a manner that one expects of a fourth-order code.

3.3. Analytical Momentum Exchange and Conservation of Momentum Tests

To ensure that our code is indeed modeling the system described by the LSB Hamiltonian (1), it is important to
have analytical results to compare with, in particular, those that include effects beyond that of Newtonian gravity.
However, the complexity of the LSB Hamiltonian (1) and the resulting Hamilton equations 9 limits the analytical
results available for comparison. Fortunately, Ledvinka et al. (2008) present the following (approximate) momentum
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Smallest Timestep Convergence Factor Q

h/4 16.2262

h/8 16.1291

h/16 16.0686

h/32 16.0353

h/64 16.0179

h/128 16.0090

h/256 16.0045

h/512 16.0023

Table 1. This table lists the value of the convergence factor Q for p2 lighter massive particle in the Five-particle test of Figure
1(f), with respect to the smallest timestep (here, h = 0.05) used to compute the convergence factor Q.

exchange formula for scattering problems:

Δp =− 2
b

b2

G

p

m̄2
1m̄

2
2

m̄1 + m̄2

×
[
1 +

(
1

m̄2
1

+
1

m̄2
2

+
4

m̄1m̄2

)
p2 +

p4

m̄2
1m̄

2
2

]
.

(21)

This formula is written in the center-of-mass frame, where both particles have momenta of magnitude p, and is
derived assuming that the spatial trajectory of each particle approximates a straight line that is (anti-) parallel to
the trajectory of the other particle. Equation (21) is therefore valid only when the angle of deflection is small, or
when the impact parameter |b| is large. The vector b points in the direction of the perpendicular separation between
the trajectories, with a magnitude given by the impact parameter |b|. The result Δp describes the total momentum
exchange between two particles during the scattering process.
The momentum exchange formula (21) may be used to test our code against the LSB Hamiltonian (1) for problems

outside the scope of Newtonian gravity; in particular, equation (21) makes use of H2 (6) and H3 (7) in the LSB
Hamiltonian, and describes the momentum exchange for the scattering of ultrarelativistic particles.
In Figure 2, we present the results of our comparison tests for scattering problems. We plot the following formula

for the relative error in the magnitude of the momentum exchange Δp for our scattering tests:

Relative Error (%) = 100×
∣∣∣∣Δpnum −Δpan

Δpan

∣∣∣∣ (22)

where Δpan is the magnitude of the momentum exchange given by formula (21), and Δpnum is our numerical result for
the magnitude of the momentum exchange. The plots in Figure 2 show that for b < 1010, the error in our scattering
tests scales as 1/b, as one might expect. The straight-line approximation used to obtain Equation (21) is only valid
for high values9 for b, so that the errors may be expanded in 1/b; it follows that for large b, the errors scale as 1/b. For
b > 1011, the relative error levels off and remains at some value on the order of 10−9 %. We attribute this behavior
for b > 1011 to truncation error. The reader may note that for the massless-massless and massless-massive cases, the
relative error becomes extremely small around b ∼ 1011 before leveling off for b > 1011; this behavior is due to a change
in sign for the quantity Δpnum −Δpan around b ∼ 1011, which does not occur for the massless-massive case.
We would like to also report that our scattering tests were consistent with conservation of momentum. In the two-

particle scattering tests we performed, the components of the momenta for each particle remained equal and opposite
to the other up to machine precision. Since the scattering tests were formulated in the center-of-mass frame, this
demonstrates that PoMiN conserves momentum in two-particle scattering problems.

3.4. Energy Dissipation

Runge-Kutta algorithms typically exhibit dissipative behavior; since PoMiN uses an RK4 integrator, one might expect
to find dissipative behavior, particularly for long-timescale simulations. In Figure 3, we plot the dissipated kinetic

9 We attribute the large errors ∼ 10% errors for the lowest values of b in Figure 2 to the failure of the straight-line approximation used
to obtain Equation (21).
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Figure 2. Plots of the relative error, Equation (22), between the momentum exchange Δpnum as computed by PoMiN and
the analytical momentum exchange Δpan, as a function of the impact parameter b. In each case, the initial conditions were
chosen so that the initial trajectories of the particles are antiparallel and offset by the impact parameter b, with an initial
separation distance (in the direction of motion) of 105b. Moreover, the initial momenta and masses were chosen so that the
total mass-energy is 1 (we work in the natural units G = 1, and c = 1). In the massive-massive scattering case (Figure 2c), we
used a mass ratio of π/4; m2 = π/4m1.

energy as a percentage of the initial kinetic energy (kinetic energy here being defined as the value of the Hamiltonian
minus the sum of the rest masses) for the high-eccentricity orbit test cases (a) and (b) presented in Figure 1. The
plots show that PoMiN does indeed exhibit dissipative behavior for high-eccentricity orbits, and they demonstrate that
on average, the dissipated kinetic energy increases linearly with time. Upon comparing the plots for dissipated kinetic
energy and the rescaled separation between the particles, we find that most of the dissipation occurs at the point of
closest approach. We also note a greater relative dissipation for the orbit with higher eccentricity (ε = 0.95). Figure 3
includes plots for both fixed timestep and adaptive timestep test cases, and we find that the dissipated kinetic energy
grows at a decreased rate when adaptive timestepping is used.
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Figure 3. Plots of the rescaled separation and the dissipated kinetic energy (energy lost) with respect to time for the orbit
test cases (a) and (b) in Figure 1. The dissipated energy plots include both fixed timestep (h = 2.7 × 1013) and adaptive
timestep cases (with Courant factor of 0.1). Again, we perform computations to quadruple floating-point precision. Here, the
kinetic energy is defined as the Hamiltonian minus the rest masses of the particles in the system, and the percentage dissipated
is calculated with respect to the initial value. The rescaled separation parameter r/109 (with r := |q2−q1|) has been plotted to
show that the most of the dissipation occurs near the point of closest approach (both plots use data from the adaptive timestep
runs).

4. APPLICATIONS AND FUTURE WORK

Since PoMiN is obtained from a PM approximation, it is well suited for modeling any astrophysical problem that
involves weak gravitational interactions between N compact objects, some or all of which are ultrarelativistic (fast
moving), provided that the timescale for gravitational interactions remains relatively short. As shown by our scattering
tests in section 3.2, successfully modeling light deflection in PoMiN is simply a matter of assigning one or more of the
N bodies to be photons. With light therefore grouped on equal footing with all of the other particles, PoMiN makes it
a straightforward task to model N -body light deflection just like any N -body gravitational dynamics problem. This
could prove particularly useful in situations in which we desire a time-dependent solution to a light deflection problem,
for example, the deflection of light by a system of gravitationally interacting bodies like a binary system or a planetary
system.
Light deflection by planetary systems has been used to find the first circumbinary planet Bennett et al. (2016). This

is a three-body problem that involves two stars and one planet, although in our code the light itself would constitute a
fourth body. Multiple models are in contention to describe this system, such as a planet orbiting a binary star versus
a planet orbiting a single star within a widely separated binary. PoMiN would be very well-suited for modeling such a
system, as well as more complicated systems with higher N such as the multiple-planet system where a Jupiter analog
was detected via light deflection Gaudi et al. (2008).
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Another scenario that could be modeled by the weak-field fast-motion gravitational dynamics of PoMiN is that of
hyper-velocity stars, such as those stars ejected from a galaxy by a binary black hole merger, which can result in stars
ejected with a speed of 1

3c. Guillochon & Loeb (2015) Loeb & Guillochon (2015)
While PoMiN is in principle an N -body code in the sense that that we place no hard limit on the number of particles

that PoMiN can accept, the O(N2) scaling limits the number of particles that PoMiN can model in practice. As a result,
PoMiN is at present only suited for problems that have a limited number of particles, but are still too complicated
to work out analytically. At the moment, support for parallel processing has not yet been implemented in PoMiN,
which presents another limitation on the number of particles PoMiN can handle; we are currently in the process of
implementing parallel processing in PoMiN.
A current limitation of PoMiN comes from the dissipative nature of the RK4 integrator, as illustrated in Figure 3;

this renders our present code unsuitable for long-timescale N -body simulations. In the future, we intend to implement
or add support for integrators that have improved energy conservation on long timescales. The methods under consid-
eriation include implicit time-symmetric Runge-Kutta or symplectic integrators Hut et al. (1997, 1995) (implemented
by way of iteration), the partitioned Runge-Kutta method Sanz-Serna & Calvo (1994), the splitting methods of Tao
Tao (2016), or the implementation of exactly conservative integrators of the type described in Shadwick et al. (1998).

This work was partially supported by the National Science Foundation under Grant No. PHY-1620610. We thank
Mark Selover for his advice and feedback.
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